Journal of Physics
Condensed Matter

Highlights 2010
Fast track your research with *Journal of Physics: Condensed Matter*

If you have a high-quality short article of new and important research, then you can submit this as a fast track communication (FTC).

The benefits of publishing a FTC include:

- **Free to read:** all FTCs are completely free to read and there is no publication charge.
- **Fast-track publication:** the average receipt to web publication time is just 40 days.
- **Fast refereeing:** you can expect to receive referee reports within two weeks.
- **High visibility:** free electronic offprints sent to readers recommended by you.
- **Promotion:** an opportunity to write a short news item about your work to feature in JPCM’s LabTalk section.

To be considered as a FTC your work must be:

- Reporting new and timely developments in condensed matter research.
- Excellent quality and of interest to the community.
- Written in a clear and concise style.

When submitting your FTC for publication please provide a written justification to the editors explaining why your article meets our stringent quality and novelty criteria. For more information contact the publishing team at jpcm@iop.org.

We invite you to visit our dedicated FTC webpage on the JPCM website at iopscience.org/jpcm to read some of the FTCs published in the journal.

Cover image: A graphene antidot. Occupational probabilities on carbon atoms of a state near the Dirac point. Park *et al* 2010 J. Phys.: Condens. Matter 22 375302.
Dear Colleagues,

This has been another successful year for *Journal of Physics: Condensed Matter* (JPCM) with our increased readership enjoying issues of high quality and exciting research. 2010 saw the launch of ‘LabTalk’, an online feature displaying author-written news items highlighting the key achievements of their recent work. We are pleased to announce that JPCM is now indexed in PubMed, and biomedical papers will also appear in Medline; great news for authors publishing in our liquids, soft matter and biological physics section.

This collection of highlights displays some of the best articles published in the journal over the course of 2010. All of these were chosen primarily for their excellent science, and they also received endorsements from referees, board members and readers. Topics featured in this collection are diverse and display the broad scope of the journal.

Fast track communications (FTCs) feature strongly in this showcase, with many researchers taking advantage of the many benefits of FTCs to display their most significant and timely work. FTCs are open access and the average receipt-to-web publication time is just 40 days. In addition, authors of FTCs can benefit from promotion of their work via LabTalk and our recommended reader service, where free electronic offprints are sent to readers of the author’s choice.

The journal continues to publish work at the forefront of condensed matter. Keep an eye out for our special issues in 2011, which will focus on a number of exciting, fast-moving areas. Topics to feature include: geometrically frustrated magnetism, domain wall dynamics in magnetic nanostructures, strongly correlated electron systems and nanoscale ferroelectrics. An area where the journal has been strong this year is graphene, and a number of top papers feature in this collection. Among these is a paper studying the electronic properties of a biased graphene bilayer, with authors including 2010 Nobel Prize® winners Andre Geim and Konstantin Novoselov.

We hope that you will find this latest collection informative and interesting. Thank you to all the authors, referees and readers who have contributed to the journal, and we look forward to working with you during 2011.

David Ferry
Editor-in-Chief

SEM image of FIB fabricated disks from the Co/Cu/Py/Cu(001). Wu *et al* 2010 *J. Phys. Condens. Matter* **22** 342001.

Five unit cells of a (4, 4) single-wall CNT (consisting of 80 atoms) as the channel, in the presence of two and four vacancies on a ring of carbon atoms. Farghadan and Saffarzadeh 2010 *J. Phys. Condens. Matter* **22** 255301.
Editorial Board

Editor-in-Chief
David K Ferry, Arizona State University, USA

Deputy Editors
John E Inglesfield, Cardiff University, UK
Hideaki Kasai, Osaka University, Japan
Peter B Littlewood, University of Cambridge, UK

Liquids, Soft Matter and Biological Physics Section Editor
Francesco Sciortino, Universita di Roma ‘La Sapienza’, Italy

Surface, Interface and Atomic-Scale Science Section Editor
Harold J W Zandvliet, Twente University, The Netherlands

Executive Board
Jon P Bird, University at Buffalo, The State University of New York, USA
Marek Cieplak, Polish Academy of Science, Warsaw, Poland
Peter A Dowben, University of Nebraska at Lincoln, USA
Jason S Gardner, NIST, Gaithersburg, USA and Indiana University, USA
Talat S Rahman, University of Central Florida, Orlando, USA
John Singleton, Los Alamos National Laboratory, USA

Advisory Board
Hajime Asahi, Osaka University, Japan
David Bowler, University College London, UK
Gustau Catalan, Universidad Autónoma de Barcelona, Spain
Vincent H Crespi, Pennsylvania State University, USA
Pengcheng Dai, University of Tennessee and Oak Ridge National Laboratory, USA
Sudesh Kumar Dhar, Tata Institute of Fundamental Research, India
Mukunda P Das, Australian National University, Canberra, Australia
James Greer, Tandall National Institute, Ireland
Frank M de Groot, Utrecht University, The Netherlands
Robert A de Groot, Radboud University, Nijmegen, The Netherlands
Anna Fontcuberta i Morral, Ecole Polytechnique Federale de Lausanne, Switzerland
Mike J Ford, Sydney University of Technology, Australia
Michel J P Gingras, University of Waterloo, Canada
John M Gregg, Queen’s University Belfast, UK
G Michael Kalvius, Technische Universität München, Germany
Mikhail Katsnelson, Radboud University Nijmegen, The Netherlands
Alison Mainwood, King’s College, London, UK
Adam Micolič, University of New South Wales, Australia
Joel Moore, University of California, Berkeley, USA
Tamio Oguchi, Hiroshima University, Japan
Teruo Ono, Kyoto University, Japan
Richard Phillips, University of Cambridge, UK
Thomas Pruschke, Goettingen University, Germany
Filip Ronning, Los Alamos National Laboratory, USA
Kenji Sakurai, National Institute for Materials Science, Tsukuba, Japan
Jeroen van den Brink, IFW Dresden, Germany
Enge Wang, Chinese Academy of Sciences, Beijing, China

Liquids, Soft Matter and Biological Physics Board
Patricia Bassereau, Institut Curie-Section de Recherche, France
Andreas R Bausch, Technical University of Munich, Germany
Juan de Pablo, University of Wisconsin, Madison, USA
Erika Eiser, University of Cambridge, UK
Margaret Gardel, University of Chicago, USA
Steve Granick University of Illinois – Urbana-Champaign, USA
Gerhard Kahl, Vienna Technical University, Austria
Alexei A Koryshch, Imperial College, London, UK
Ludwig Leibler, Ecole Supérieure Physique Chimie Industrielles, Paris, France
Albrecht Ott, Universität des Saarlandes, Germany
B Montgomery Pettitt, University of Houston, USA
Roberto Piazza, Politecnico di Milano, Italy
Veronique Trappe, University of Fribourg, Switzerland
Hiroshi Yokoyama, Kent State University, USA

Surface, Interface and Atomic-Scale Science Board
Jesper Andersen, Lund University, Sweden
Scott Chambers, Pacific Northwest National Laboratory, USA
Pedro L Andes, Consejo Superior de Investigaciones Científicas, Spain
Katsuyuki Fukutani, University of Tokyo, Japan
Thomas Greber, Zurich University, Switzerland
Roberto Gunnella, Università di Camerino, Italy
Claude R Henry, University of Marseilles, France
Maya Kiskinova, Sincrotrone Trieste, Italy
Natalia Martinsinovich, University of Warwick, UK
Philip Moriarty, University of Nottingham, UK
J Enrique Ortega, Universidad del Pais Vasco, Spain
Miguel Salmeron, Lawrence Berkeley National Laboratory, USA
Susan Sinnott, University of Florida, USA
Yuanbo Zhang, Fudan University, China
Journal scope

Journal of Physics: Condensed Matter covers the whole of condensed matter physics, including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies.

Papers are published under the following subject sections:
- Surface, interface and atomic-scale science
- Liquids, soft matter and biological physics
- Nanostructures and nanoelectronics
- Solid structure and lattice dynamics
- Electronic structure
- Correlated electrons
- Superconductors and metals
- Semiconductors
- Dielectrics and ferroelectrics
- Magnetism and magnetic materials

More information on each of these areas can be found at iopscience.org/jpcm.

Journal team

Our dedicated team at IOP Publishing is here to ensure that the peer-review process runs as smoothly as possible for our authors.

About IOP Publishing

IOP Publishing is a not-for-profit organization dedicated to science communication. IOP Publishing provides a comprehensive range of products and services to the physics and physics-related communities including an award-winning platform for electronic publishing. It is also an integral part of the Institute of Physics, a leading international professional body and learned society, established to promote the advancement of physics. IOP Publishing directly contributes to the funding of the educational and charitable work done by the Institute.
2010 Special issues

The journal’s authoritative special issue programme aims to cover the most exciting and most rapidly developing areas of condensed matter, with experts in the field contributing to high-quality issues of original research. Below are some highlights from our special issue programme for 2010.

Carbon and related nanomaterials

Guest Editors: Milton W Cole, Vincent H Crespi, Gene F Dresselhaus, Mildred S Dresselhaus, Gerald D Mahan and Jorge O Sofo

2010 J. Phys.: Condens. Matter 22 issue 33

This special issue contains a selection of articles providing new insights into the fascinating and challenging science behind nanomaterials. Among the materials considered in this issue are graphene, nanotubes, nanopores and fullerenes. The reader will find studies into the magnetic behaviour, optics, structure, adsorption and transport properties of such materials.

New developments in nanopore research

Guest Editors: Tim Albrecht, Joshua B Edel and Mathias Winterhalter

2010 J. Phys.: Condens. Matter 22 issue 45

Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. This is a very active area and these articles aim to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities.

Time-resolved scanning tunnelling microscopy

Guest Editor: Harold J W Zandvliet and Nian Lin

2010 J. Phys.: Condens. Matter 22 issue 26

Scanning tunnelling microscopy (STM) has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. This issue reports progress in the rapidly emerging field of time-resolved STM, and highlights the potential of this powerful technique. Although the majority of studies that have been performed so far focus on simple systems it is anticipated that time-resolved scanning tunneling microscopy will also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal.

New trends in simulating colloids and self-assembling systems

Guest Editors: Giuseppe Foffi and Gerhard Kahl

2010 J. Phys.: Condens. Matter 22 issue 10

Interest in colloidal physics has grown at an incredible pace over the past few decades. To a great extent this remarkable development is due to the fact that colloidal systems are highly relevant in everyday applications as well as in basic research. This issue presents theoretical and simulation-based papers and aims to further understanding of many phenomena in soft and bio-related physics, such as phase behaviour, self-assembly strategies, and rheological properties. These insights might help to guide experiments and the design of new colloid-based materials with desired properties.
Topical reviews

Topical reviews in *Journal of Physics: Condensed Matter* (JPCM) bring you an authoritative, up-to-date overview of the latest hot topics in the field of condensed matter. Typically commissioned by the Editorial Board they often deal with subjects that are still developing rapidly and may provide an indication of the future direction of the field.

Visit our dedicated topical review page at iopscience.iop.org/jpcm to view some of the best recent reviews. All reviews in this collection are free to read.

JPCM topical reviews continue to prove popular with readers, and here we highlight some of the best from 2010.

Magnetic nanostructures
K Bennemann
2010 *J. Phys.: Condens. Matter* **22** 243201

Charge transport through molecular switches
Sense Jan van der Molen and Peter Liljeroth
2010 *J. Phys.: Condens. Matter* **22** 133001

Magnetism in Fe-based superconductors
M D Lumsden and A D Christianson
2010 *J. Phys.: Condens. Matter* **22** 203203

Disorder and electronic transport in graphene
E R Mucciolo and C H Lewenkopf
2010 *J. Phys.: Condens. Matter* **22** 273201

Magnetism of solids resulting from spin polarization of p orbitals
O Volnianska and P Boguslawski
2010 *J. Phys.: Condens. Matter* **22** 073202

Jamming of soft particles: geometry, mechanics, scaling and isostaticity
M van Hecke
2010 *J. Phys.: Condens. Matter* **22** 033101

A perspective on the Fe-based superconductors
John A Wilson
2010 *J. Phys.: Condens. Matter* **22** 203201

Sensing gases with carbon nanotubes: a review of the actual situation
A Goldoni, L Petaccia, S Lizzit and R Larciprete
2010 *J. Phys.: Condens. Matter* **22** 013001

Electronic phenomena at complex oxide interfaces: insights from first principles
Rossitza Pentcheva and Warren E Pickett
2010 *J. Phys.: Condens. Matter* **22** 043001

Electrical polarization and orbital magnetization: the modern theories
Raffaele Resta
2010 *J. Phys.: Condens. Matter* **22** 123201
Contents

Surface, interface and atomic-scale science

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct and core-resonant double photoemission from Cu(001)</td>
<td>11</td>
</tr>
<tr>
<td>Grant van Riessen, Zheng Wei, Rajendra S Dhaka, Carsten Winkler, Frank O Schumann and Jürgen Kirschner</td>
<td></td>
</tr>
<tr>
<td>Structural characterization of thin layered materials using x-ray standing wave enhanced elastic and inelastic scattering measurements</td>
<td>11</td>
</tr>
<tr>
<td>M K Tiwari and K J S Sawhney</td>
<td></td>
</tr>
<tr>
<td>Modified bimodal growth mechanism of pentacene thin films at elevated substrate temperatures</td>
<td>11</td>
</tr>
<tr>
<td>Dong Guo, Susumu Ikeda and Koichiro Saiki</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic instability at the stoichiometric LaAlO$_3$/SrTiO$_3$(001) interface</td>
<td>12</td>
</tr>
<tr>
<td>L Qiao, T C Droubay, V Shutthanandan, Z Zhu, P V Sushko and S A Chambers</td>
<td></td>
</tr>
<tr>
<td>A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption</td>
<td>12</td>
</tr>
<tr>
<td>David Karhánek, Tomáš Bučko and Jürgen Hafner</td>
<td></td>
</tr>
</tbody>
</table>

Liquids, soft matter and biological physics

JPCM is now indexed by PubMed

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-pressure behaviour of GeO$_2$: a simulation study</td>
<td>12</td>
</tr>
<tr>
<td>Dario Marrocchelli, Mathieu Salanne and Paul A Madden</td>
<td></td>
</tr>
<tr>
<td>Modulation of electronic structures of bases through DNA recognition of protein</td>
<td>13</td>
</tr>
<tr>
<td>Yohsuke Hagiwara, Hiori Kino and Masaru Tateno</td>
<td></td>
</tr>
<tr>
<td>Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation</td>
<td>13</td>
</tr>
<tr>
<td>Takeshi Kawasaki and Hajime Tanaka</td>
<td></td>
</tr>
<tr>
<td>Biomimetic structures for fluid drag reduction in laminar and turbulent flows</td>
<td>14</td>
</tr>
<tr>
<td>Yong Chae Jung and Bharat Bhushan</td>
<td></td>
</tr>
<tr>
<td>Mechanical properties of ternary lipid membranes near a liquid–liquid phase separation boundary</td>
<td>14</td>
</tr>
<tr>
<td>Young Zoon Yoon, John P Hale, Peter G Petrov and Pietro Cicuta</td>
<td></td>
</tr>
<tr>
<td>Modelling the self-assembly of virus capsids</td>
<td>14</td>
</tr>
<tr>
<td>Iain G Johnston, Ard A Louis and Jonathan P K Doye</td>
<td></td>
</tr>
</tbody>
</table>

Nanostructures and nanoelectronics

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene</td>
<td>15</td>
</tr>
<tr>
<td>Cameron Bjelkevig, Zhou Mi, Jie Xiao, P A Dowben, Lu Wang, Wai-Ning Mei and Jeffry A Kelber</td>
<td></td>
</tr>
<tr>
<td>Graphene based quantum dots</td>
<td>15</td>
</tr>
<tr>
<td>H G Zhang, H Hu, Y Pan, J H Mao, M Gao, H M Guo, S X Du, T Greber and H-J Gao</td>
<td></td>
</tr>
<tr>
<td>Thermoelectric properties of graphene nanoribbons, junctions and superlattices</td>
<td>15</td>
</tr>
<tr>
<td>Y Chen, T Jayasekera, A Calzolari, K W Kim and M Buongiorno Nardelli</td>
<td></td>
</tr>
<tr>
<td>The conduction gap in double gate bilayer graphene structures</td>
<td>16</td>
</tr>
<tr>
<td>V Hung Nguyen, A Bournel and P Dolfus</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Heat transfer between graphene and amorphous SiO₂</td>
<td>16</td>
</tr>
<tr>
<td>B N J Persson and H Ueba</td>
<td></td>
</tr>
<tr>
<td>Curvature-induced D-band Raman scattering in folded graphene</td>
<td>16</td>
</tr>
<tr>
<td>Awnish K Gupta, Cristiano Nisoli, Paul E Lammert, Vincent H Crespi and Peter C Eklund</td>
<td></td>
</tr>
<tr>
<td>Selective D₂ adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes</td>
<td>17</td>
</tr>
<tr>
<td>Solid structure and lattice dynamics</td>
<td>17</td>
</tr>
<tr>
<td>Elastic relaxations associated with the Pm₃m–R3c transition in LaAlO₃: II. Mechanisms of static and dynamical softening</td>
<td>17</td>
</tr>
<tr>
<td>M A Carpenter, S V Sinogeikin and J D Bass</td>
<td></td>
</tr>
<tr>
<td>A mixed-space approach to first-principles calculations of phonon frequencies for polar materials</td>
<td>18</td>
</tr>
<tr>
<td>Y Wang, J J Wang, W Y Wang, Z G Mei, S L Shang, L Q Chen and Z K Liu</td>
<td></td>
</tr>
<tr>
<td>Polymeric forms of carbon in dense lithium carbide</td>
<td>18</td>
</tr>
<tr>
<td>Xing-Qiu Chen, C L Fu and C Franchini</td>
<td></td>
</tr>
<tr>
<td>An efficient computational method for use in structural studies of crystals with substitutional disorder</td>
<td>18</td>
</tr>
<tr>
<td>Roberta Poloni, Jorge Íñiguez, Alberto García and Enric Canadell</td>
<td></td>
</tr>
<tr>
<td>Electronic structure</td>
<td>19</td>
</tr>
<tr>
<td>Electronic properties of a biased graphene bilayer</td>
<td>19</td>
</tr>
<tr>
<td>*2010 Nobel Prize® Laureates</td>
<td></td>
</tr>
<tr>
<td>Chemical accuracy for the van der Waals density functional</td>
<td>19</td>
</tr>
<tr>
<td>Jiří Klimeš, David R Bowler and Angelos Michaelides</td>
<td></td>
</tr>
<tr>
<td>An ab initio study of xenon retention in α-c Quartz</td>
<td>20</td>
</tr>
<tr>
<td>M I J Probert</td>
<td></td>
</tr>
<tr>
<td>Energy spectrum and density of states for a graphene quantum dot in a magnetic field</td>
<td>20</td>
</tr>
<tr>
<td>Norman J Morgenstern Horing and S Y Liu</td>
<td></td>
</tr>
<tr>
<td>Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations</td>
<td>20</td>
</tr>
<tr>
<td>Hoonkyung Lee</td>
<td></td>
</tr>
<tr>
<td>Correlated electrons</td>
<td>21</td>
</tr>
<tr>
<td>Extended DFT + U + V method with on-site and inter-site electronic interactions</td>
<td>21</td>
</tr>
<tr>
<td>Vivaldo Leiria Campo Jr and Matteo Cococcioni</td>
<td></td>
</tr>
<tr>
<td>Evidence of superconductivity on the border of quasi-2D ferromagnetism in Ca₂RuO₄ at high pressure</td>
<td>21</td>
</tr>
<tr>
<td>Patricia Lebre Alireza, Fumihiko Nakamura, Swee Kuan Goh, Yoshitomo Maeno, Satoru Nakatsuji, Yuen Ting Chris Ko, Michael Sutherland, Stephen Julian and Gilbert George Lonzarich</td>
<td></td>
</tr>
<tr>
<td>Antiferro-quadrupolar structures in UPd₃ inferred from x-ray resonant Bragg diffraction</td>
<td>21</td>
</tr>
<tr>
<td>Javier Fernández-Rodriguez, Stephen W Lovesey and Jesús A Blanco</td>
<td></td>
</tr>
<tr>
<td>Weak coupling magnetism in Ce₄P₄S₁₄: a small exchange limit in the Doniach phase diagram</td>
<td>22</td>
</tr>
<tr>
<td>Han-Oh Lee, Nobuyuki Kurita, Pei-chun Ho, Cathie L Condron, Peter Klavins, Susan M Kauzlarich, M B Maple, R Movshovich, E D Bauer, J D Thompson and Z Fisk</td>
<td></td>
</tr>
</tbody>
</table>
Superconductors and metals

High pressure study of BaFe\(_2\)As\(_2\)—the role of hydrostaticity and uniaxial stress
W J Duncan, O P Welzel, C Harrison, X F Wang, X H Chen, F M Grosche and P G Niklowitz
Page 22

A comparative study on the thermoelectric effect of parent oxypnictides La\(\text{TAsO}\) \((\text{T = Fe, Ni})\)
Qian Tao, Zengwei Zhu, Xiao Lin, Guanghan Cao, Zhi-an Xu, Genfu Chen, Jianlin Luo and Nanlin Wang
Page 23

Superconductivity at 23 K in Pt doped BaFe\(_2\)As\(_2\) single crystals
S R Saha, T Drye, K Kirshenbaum, N P Butch, P Y Zavalij and Johnpierre Paglione
Page 23

Vortex properties of two-dimensional superconducting Pb films
Y X Ning, C L Song, Y L Wang, Xi Chen, J F Jia, Q K Xue and X C Ma
Page 23

Semiconductors

Native defects in oxide semiconductors: a density functional approach
Fumiyasu Oba, Minseok Choi, Atsushi Togo, Atsuto Seko and Isao Tanaka
Page 24

Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays
Y Tanaka, S P Collins, S W Lovesey, M Matsumami, T Moriwaki and S Shin
Page 24

First principles study of the optical contrast in phase change materials
S Caravati, M Bernasconi and M Parrinello
Page 25

Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi\(_2\)Te\(_3\)
Y S Hor, D Qu, N P Ong and R J Cava
Page 25

Dielectrics and ferroelectrics

The flexoelectricity of barium and strontium titanates from first principles
Jiawang Hong, G Catalan, J F Scott and E Artacho
Page 25

Invariant lattice strain and polarization in Ba\(\text{TiO}_3\)–Ca\(\text{TiO}_3\) ferroelectric alloys
Desheng Fu, Mitsuru Itoh and Shin-ya Koshihara
Page 26

Polarization and magnetization dynamics of a field-driven multiferroic structure
Alexander Sukhov, Chenglong Jia, Paul P Horley and Jamal Berakdar
Page 26

Interlayer exchange coupling across a ferroelectric barrier
M Ye Zhuravlev, A V Vedyayev and E Y Tsymbal
Page 26

Artificial magnetism and left-handed media from dielectric rings and rods
L Jelinek and R Marqués
Page 27

Magnetism and magnetic materials

Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires
H J Xu, H C Zhu, X D Shan, Y X Liu, J Y Gao, X Z Zhang, J M Zhang, P W Wang, Y M Hou and D P Yu
Page 27

Neutron diffraction study of the BiFeO\(_3\) spin cycloid at low temperature
Julia Herrero-Albillos, Gustau Catalan, José Alberto Rodríguez-Velamazan, Michel Viret, Dorothée Colson and James F Scott
Page 28

Low temperature incommensurately modulated and noncollinear spin structure in FeCr\(_2\)\(\text{S}_4\)
G M Kalvius, A Krimmel, O Hartmann, R Wäppling, F E Wagner, F J Litterst, V Tsurkan and A Leidl
Page 28

Stable and fast semi-implicit integration of the stochastic Landau–Lifshitz equation
J H Mentink, M V Tretjakov, A Fasolino, M I Katsnelson and Th Rasing
Page 29

The paired-electron crystal in the two-dimensional frustrated quarter-filled band
H Li, R T Clay and S Mazumdar
Page 29
Direct and core-resonant double photoemission from Cu(001)

Grant van Riessen, Zheng Wei, Rajendra S Dhaka, Carsten Winkler, Frank O Schumann and Jürgen Kirschner

Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

2010 J. Phys.: Condens. Matter 22 092201

We have measured the correlated electron pair emission from a Cu(001) surface by both direct and core-resonant channels upon excitation with linearly polarized photons of energy far above the 3p threshold. As expected for a single-step process mediated by electron correlation in the initial and final states, the two electrons emitted by the direct channel continuously share the sum of the energy available to them. The core-resonant channel is often considered in terms of successive and independent steps of photoexcitation and Auger decay. However, electron pairs emitted by the core-resonant channel also share their energy continuously to jointly conserve the energy of the complete process. By detecting the electron pairs in parallel over a wide range of energy, evidence of the core-resonant double photoemission proceeding by a coherent single-step process is most strikingly manifested by a continuum of correlated electron pairs with a sum energy characteristic of the process but for which the individual electrons have arbitrary energies and cannot meaningfully be distinguished as a photoelectron or Auger electron.

Modified bimodal growth mechanism of pentacene thin films at elevated substrate temperatures

Dong Guo1,2, Susumu Ikeda2 and Koichiro Saiki2

1 Institute of Acoustics, Chinese Academy of Sciences, Bei-Si-Huan-Xi Road 21, Beijing 100190, People’s Republic of China
2 Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, Japan

2010 J. Phys.: Condens. Matter 22 262001

The growth of pentacene thin films at elevated temperatures was studied. We observed decreased grain size and crystallinity with increasing substrate temperature in 30 nm films, despite the increased grain size of the submonolayer films. These were attributed to a two-dimensional to three-dimensional growth transition and a pronounced desorption of the first monolayer molecules. The observed coarsening-like behavior and the dendritic to compact grain geometry transition with temperature were explained by classic growth theories. A modified bimodal growth mechanism at elevated temperatures was proposed by analyzing both the out-of-plane and the in-plane grazing incidence x-ray diffraction patterns of the same films.

Structural characterization of thin layered materials using x-ray standing wave enhanced elastic and inelastic scattering measurements

M K Tiwari1,2 and K J S Sawhney2

1 Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
2 Indus Synchrotron Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013, India

2010 J. Phys.: Condens. Matter 22 175003

By measuring the intensities of the x-ray standing wave induced elastic and inelastic x-ray scattering from thin multilayer structures, we show that structural characterizations of the high and low z (atomic number) material layers can be performed independently. The method has been tested by analyzing the structural properties of an Nb/C/Nb trilayer and a Mo/Si periodic multilayer structure. The results of the x-ray scattering measurements have been compared with those obtained using x-ray reflectivity and conventional x-ray standing wave fluorescence techniques. It has been demonstrated that the present approach is especially suitable for studying multilayer structures comprising low atomic number layers, as it eliminates the requirement of a fluorescence signal, which is very weak in the case of low z materials.
Thermodynamic instability at the stoichiometric LaAlO$_3$/SrTiO$_3$(001) interface

L Qiao1, T C Droubay2, V Shutthanandan1, Z Zhu1, P V Sushko2 and S A Chambers1

1 Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
2 Department of Physics and Astronomy and the London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK

2010 J. Phys.: Condens. Matter 22 312201

Stoichiometric epitaxial LaAlO$_3$ grown on TiO$_2$-terminated SrTiO$_3$(001) by off-axis pulsed laser deposition is shown to exhibit strong cation intermixing. This result is corroborated by classical and quantum mechanical calculations of the relative stabilities of abrupt and intermixed interface configurations. The valence band offset was measured to be 0.16 ± 0.10 eV, and this value cannot be accounted for theoretically without including intermixing in the physical description of the interface.

High-pressure behaviour of GeO$_2$: a simulation study

Dario Marrocchelli1, Mathieu Salanne1,3 and Paul A Madden4

1 School of Chemistry, University of Edinburgh, Edinburgh EH9 3JU, UK
2 UPMC Université Paris 06, UMR 7612, PECSA, F-75005 Paris, France
3 CNRS, UMR 7612, PECSA, F-75005 Paris, France
4 Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

2010 J. Phys.: Condens. Matter 22 152102

In this work we study the high-pressure behaviour of liquid and glassy GeO$_2$ by means of molecular dynamics simulations. The interaction potential, which includes dipole polarization effects, was parametrized using first-principles calculations. Our simulations reproduce the most recent experimental structural data very well. The character of the pressure-induced structural transition in the glassy system has been a matter of controversy. We show that our simulations and the experimental data are consistent with a smooth transition from a tetrahedral to an octahedral network with a significant number of pentacoordinated germanium ions appearing over an extended pressure range. Finally, the study of high-pressure, liquid germania confirms that this material presents an anomalous behaviour of the diffusivity as observed in analogous systems such as silica and water. The importance of pentacoordinated germanium ions for such behaviour is stressed.

A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption

David Karhánek, Tomáš Bucík and Jürgen Hafner

Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse 8/12, A-1090 Wien, Austria

2010 J. Phys.: Condens. Matter 22 265005

The molecular and dissociative adsorption of methane-thiol (CH$_3$SH) in the high-coverage limit on the (111) surfaces of the Ni-group metals has been investigated using ab initio density functional techniques. In molecular form, methane-thiol is bound to the surface only by weak polarization-induced forces in a slightly asymmetric configuration with the C–S axis tilted by 35–60° relative to the surface normal. On Ni and Pd surfaces the S atom occupies a position close to a bridge site; on Pt it is located close to an on-top position. The length of the S–H bond is only slightly stretched relative to its value in the gas phase, indicating only a very modest degree of activation for dehydrogenation. A strong covalent adsorbate/substrate bond is formed upon adsorption of a methane-thiolate (CH$_3$S) radical. On Ni(111) in the energetically most favorable configuration the S atom occupies a position in a threefold hollow, slightly displaced towards a bridge site. The C–S axis is tilted by about 35° across the bridge. On Pd(111) and Pt(111) the S atom of thiolate occupies a position between a hollow and a bridge site, with the C–S axis tilted even more strongly across a neighboring threefold hollow. On all three surfaces our calculations demonstrate the existence of multiple metastable adsorption configurations, including upright CH$_3$S bound in the center of a threefold hollow as reported in some earlier studies. Dehydrogenation of the adsorbed methane-thiol to form co-adsorbed methane-thiolate and atomic hydrogen is an exothermic process, which is not activated on Ni(111) but activated on Pd(111) and Pt(111).

Simulated diffusion coefficients on liquid (T ~ 4000 K) germania and percentage of GeO$_2$ units as a function of increasing pressure.
Modulation of electronic structures of bases through DNA recognition of protein

Yohsuke Hagiwara1,2, Hiori Kino3 and Masaru Tateno1,2

1 Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
2 Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
3 Computational Materials Science Center, National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan

2010 J. Phys.: Condens. Matter 22 152101

The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.

Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation

Takeshi Kawasaki and Hajime Tanaka

Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

2010 J. Phys.: Condens. Matter 22 232102

The physical understanding of glass transition remains a major challenge of physics and materials science. Among various glass-forming liquids, a colloidal liquid interacting with hard-core repulsion is now regarded as one of the most ideal model systems. Here we study the structure and dynamics of three-dimensional polydisperse colloidal liquids by Brownian dynamics simulations. We reveal that medium-range crystalline bond orientational order of the hexagonal close packed structure grows in size and lifetime with increasing packing fraction. We show that dynamic heterogeneity may be a direct consequence of this transient structural ordering, which suggests its origin is thermodynamic rather than kinetic. We also reveal that nucleation of crystals preferentially occurs in regions of high medium-range order, reflecting the low crystal–liquid interfacial energy there. These findings may shed new light not only on the fundamental nature of the glass transition, but also the mechanism of crystal nucleation.

NEW FOR 2011

JPCM is now indexed in PubMed. Biomedical papers will also be indexed and included in Medline.
Biomimetic structures for fluid drag reduction in laminar and turbulent flows

Yong Chae Jung and Bharat Bhushan

Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB²),
The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA

2010 J. Phys.: Condens. Matter 22 035104

Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

Modelling the self-assembly of virus capsids

Iain G Johnston¹, Ard A Louis¹ and Jonathan P K Doye²

¹ Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
² Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK

2010 J. Phys.: Condens. Matter 22 104101

We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number \(T = 3 \), and observe assembly dynamics more complex than that seen for the original \(T = 1 \) model.

Mechanical properties of ternary lipid membranes near a liquid–liquid phase separation boundary

Young Zoon Yoon¹,², John P Hale¹, Peter G Petrov³ and Pietro Cicuta²

¹ Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
² Cavendish Laboratory and Nanoscience Centre, University of Cambridge, Cambridge CB3 0HE, UK
³ School of Physics, University of Exeter, Exeter EX4 4QL, UK

2010 J. Phys.: Condens. Matter 22 062101

We study the mechanical properties of ternary lipid bilayers assembled in giant vesicles, formed from a saturated and an unsaturated phosphocholine (in equal proportions) and cholesterol. As a function of temperature, these systems can undergo in-plane phase separation. Using image analysis we identify the vesicle contour, and quantify the vesicle shape and the amplitude of membrane thermal fluctuations. The two lipid compositions chosen show different thermotropic behaviours. At 60 mol% cholesterol the membrane is in a uniform liquid state over the entire temperature range investigated (10–50 °C), but vesicles containing 30 mol% cholesterol undergo phase separation into two immiscible liquid phases at around 28 °C. Upon cooling below this transition temperature we observe a marked increase in the measured bending elastic modulus. Phase separation proceeds over a long time (tens of minutes), and we measure the properties of vesicles both during the domain coarsening phase and in the fully phase separated condition. Fluorescence microscopy allows us to identify the coexisting phases. We can therefore measure directly the bending moduli of each of the phases as a function of temperature, showing a strong variation which is attributed to the changing phospholipid and cholesterol composition.
Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene

Cameron Bjelkevig1, Zhou Mi1, Jie Xiao2, P A Dowben2, Lu Wang3, Wai-Ning Mei3 and Jeffry A Kelber1

1 Department of Chemistry and Center for Electronic Materials Processing and Integration, University of North Texas, Denton, TX 76203-5070, USA
2 Department of Physics and Astronomy, Nebraska Center for Nanostructures and Materials, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, USA
3 Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA

2010 J. Phys.: Condens. Matter 22 302002

A significant BN-to-graphene charge donation is evident in the electronic structure of a graphene/h-BN(0001) heterojunction grown by chemical vapor deposition and atomic layer deposition directly on Ru(0001), consistent with density functional theory. This filling of the lowest unoccupied state near the Brillouin zone center has been characterized by combined photoemission/\(k \) vector resolved inverse photoemission spectroscopies, and Raman and scanning tunneling microscopy/spectroscopy. The unoccupied \(\sigma^*(\Gamma_1+) \) band dispersion yields an effective mass of 0.05 \(m_e \) for graphene in the graphene/h-BN(0001) heterostructure, in spite of strong perturbations to the graphene conduction band edge placement.

Thermoelectric properties of graphene nanoribbons, junctions and superlattices

Y Chen1, T Jayasekera1, A Calzolari2, K W Kim3 and M Buongiorno Nardelli1,4

1 Department of Physics, North Carolina State University, Raleigh, NC 27695-7518, USA
2 Theory@Elettra Group, DEMOCRITOS National Simulation Center CNR-IOM Istituto Officina dei Materiali, I-34014 Trieste, Italy
3 Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA
4 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6359, USA

2010 J. Phys.: Condens. Matter 22 372202

Using model interaction Hamiltonians for both electrons and phonons and Green’s function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak \(ZT \) values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.

Graphene based quantum dots

H G Zhang1, H Hu1, Y Pan1, J H Mao1, M Gao1, H M Guo1, S X Du1, T Greber2 and H-J Gao1

1 Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190, People’s Republic of China
2 Physik-Institut, University of Zürich, Würenholzerstrasse 19, CH-8057 Zürich, Switzerland

2010 J. Phys.: Condens. Matter 22 302001

Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The \(dI/dV \) conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated ‘hill’ regions with a diameter of 2 nm, where the graphene is decoupled from the surface.
The conduction gap in double gate bilayer graphene structures

V Hung Nguyen1,2, A Bournel1 and P Dollfus1

1 Institut d’Électronique Fondamentale, UMR8622, CNRS, Université Paris Sud, 91405 Orsay, France
2 Theoretical Department, Institute of Physics, VAST, PO Box 429 Bo Ho, Hanoi 10000, Vietnam

2010 J. Phys.: Condens. Matter 22 115304

Using the nonequilibrium Green function method, the electrical behavior of a double gate bilayer graphene structure is investigated. Due to energy bandgap opening when potential energies in the layers are different, a clear gap of electrical current is observed. The sensitivity of this phenomenon to device parameters (gate length, temperature) has been considered systematically. It appears that the threshold voltage can be controlled by tuning the gate voltages and/or the Fermi energy. Our obtained results may be useful and provide new suggestions for further experimental investigations.

Local density of states for a double gate bilayer graphene structure.

Curvature-induced D-band Raman scattering in folded graphene

Awnish K Gupta1, Cristiano Nisoli2, Paul E Lammert1, Vincent H Crespi1,3 and Peter C Eklund1,3

1 Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

2010 J. Phys.: Condens. Matter 22 334205

Micro-Raman scattering from folds in single-layer graphene sheets finds a D-band at the fold for both incommensurate and commensurate folding, while the parent single-layer graphene lacks a D-band. A coupled elastic-continuum/tight-binding calculation suggests that this D-band arises from the spatially inhomogeneous curvature around a fold in a graphene sheet. The polarization dependence of the fold-induced D-band further reveals that the inhomogeneous curvature acts as a very smooth, ideal one-dimensional defect along the folding direction.

DID YOU KNOW?

JPCM articles received 1.5 million downloads in 2010.
Selective D₂ adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes

Daisuke Noguchi¹, Hideki Tanaka², Toshihiko Fujimori³, Hirotoshi Kagita³, Yoshiyuki Hatton³, Hiroaki Honda³, Koki Urta³, Shigenori Utsumi³, Zhong-Ming Wang⁴, Tomonori Ohba⁵, Hirofumi Kanoh⁶, Kenji Hata⁷ and Katsumi Kaneko⁸

¹ Department of Chemistry Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
² Department of Chemical Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
³ Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
⁴ Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
⁵ Department of Mechanical Systems Engineering, Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino 391-0292, Japan
⁶ National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tukuba, Ibaraki 305-5869, Japan
⁷ Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi Tukuba, Ibaraki 305-8565, Japan

2010 J. Phys.: Condens. Matter 22 334207

The quantum sieving effect of D₂ over H₂ is examined at 40 and 77 K by means of experiments and GCMC simulations, for two types of single-wall carbon nanotubes that are distinguishable by their unique entangled structures; (1) a well-bundled SWCNT and (2) loosely-assembled SWCNT produced by the super growth method (SG-SWCNT). Oxidized SWCNT samples of which the so-called internal sites are accessible for H₂ and D₂, are also studied. Experimental H₂ and D₂ adsorption properties on the well-bundled SWCNTs are compared with the simulated ones, revealing that pore-blocking and restricted diffusion of the molecules suppress the high selectivity of D₂ over H₂. The non-oxidized SG-SWCNT assembly shows the highest selectivity among the SWCNT samples, both at 40 and 77 K. The high selectivity of the SG-SWCNT assembly, which is pronounced even at 77 K, is ascribed to their unique assembly structure.

Brillouin spectra have been collected in situ at temperatures up to ~1000 K for different crystallographic directions from two single crystal plates of LaAlO₃ perovskite. Elastic moduli derived from these, together with heat capacity, spontaneous strain and Raman data from the literature, have then been used to calibrate the coefficients in a classical Landau free energy expansion for the second order Pm3m ↔ R3c phase transition at T_c = 817 K. The static strain/order parameter coupling model provides a quantitative description of elastic softening between room temperature and ~700 K, but from ~700 K up to T_c additional elastic softening correlates with the development of a central peak in the Brillouin spectra. The presence of quasi-elastic scattering, which reaches maximum intensity ~5–15 K below T_c, implies a strong dynamical component to the phase transition. Relaxation times estimated from the width of the central peak are of the order of ~10–100 ps and appear to be more or less constant between ~700 and 800 K, which is consistent with an intrinsic origin associated with phonon density fluctuations. Central peak width variations and an irregular pattern of acoustic velocity variations in a 20 K temperature interval below T_c are interpreted in terms of flipping of clusters of tilted octahedra between different 〈111〉, 〈011〉 and 〈001〉 tilt axes. The additional softening beyond that expected from the classical strain/order parameter coupling model can be understood in terms of coupling of acoustic modes with the central peak mode(s).

Get the latest JPCM research sent straight to you.

Sign up for free e-mail alerts at iopscience.org/jpcm
A mixed-space approach to first-principles calculations of phonon frequencies for polar materials

Y Wang, J J Wang, W Y Wang, Z G Mei, S L Shang, L Q Chen and Z K Liu
Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA

2010 J. Phys.: Condens. Matter 22 202201

IOP Fast Track Communications

We propose a mixed-space approach using the accurate force constants calculated by the direct approach in real space and the dipole–dipole interactions calculated by linear response theory in reciprocal space, making the accurate prediction of phonon frequencies for polar materials possible using the direct approach as well as linear response theory. As examples, by using the present approach, we predict the first-principles phonon properties of the polar materials \(\alpha\)-Al\(_2\)O\(_3\), MgO, c-SiC, and h-BN, which are in excellent agreement with available experimental data.

Polymeric forms of carbon in dense lithium carbide

Xing-Qiu Chen\(^1\), C L Fu\(^2\) and C Franchini\(^3\)

\(^1\) Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
\(^2\) Shenyang National Laboratory for Materials Sciences, Institute for Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People’s Republic of China
\(^3\) Faculty of Physics, University of Vienna and Center for Computational Materials Science, A-1090 Vienna, Austria

2010 J. Phys.: Condens. Matter 22 292201

IOP Fast Track Communications

The immense interest in carbon nanomaterials continues to stimulate intense research activities aimed at realizing carbon nanowires, since linear chains of carbon atoms are expected to display novel and technologically relevant optical, electrical and mechanical properties. Although various allotropes of carbon (e.g., diamond, nanotubes, graphene, etc) are among the best-known materials, it remains challenging to stabilize carbon in the one-dimensional form because of the difficulty of suitably saturating the dangling bonds of carbon. Here, we show through first-principles calculations that ordered polymeric carbon chains can be stabilized in solid Li\(_2\)C\(_2\) under moderate pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays of twofold zigzag carbon chains embedded in lithium cages, which display a metallic character due to the formation of partially occupied carbon lone-pair states in sp\(^2\)-like hybrids. It is found that this phase remains the most favorable one in a wide range of pressures. At extreme pressure (larger than 215 GPa) a structural and electronic phase transition towards an insulating single-bonded threefold-coordinated carbon network is predicted.

An efficient computational method for use in structural studies of crystals with substitutional disorder

Roberta Poloni, Jorge Íñiguez, Alberto García and Enric Canadell
Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain

2010 J. Phys.: Condens. Matter 22 415401

We present a computationally efficient semi-empirical method, based on standard first-principles techniques and the so-called virtual crystal approximation, for determining the average atomic structure of crystals with substitutional disorder. We show that, making use of a minimal amount of experimental information, it is possible to define convenient figures of merit that allow us to recast the determination of the average atomic ordering within the unit cell as a minimization problem. We have tested our approach by applying it to a wide variety of materials, ranging from oxynitrides to borocarbides and transition-metal perovskite oxides. In all the cases we were able to reproduce the experimental solution, when it exists, or the first-principles result obtained by means of much more computationally intensive approaches.
Electronic properties of a biased graphene bilayer

Eduardo V Castro1,2, K S Novoselov2, S V Morozov3, N M R Peres4, J M B Lopes dos Santos1, Johan Nilsson2, F Guinea2, A K Geim5 and A H Castro Neto5

1 CFP and Departamento de Física, Faculdade de Ciências Universidade do Porto, P-4169-007 Porto, Portugal
2 Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
3 Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
4 Centre of Physics and Departamento de Física, Universidade do Minho, P-4710-057 Braga, Portugal
5 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA

2010 J. Phys.: Condens. Matter 22 175503

We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system—a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron–hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ_4 (inter-layer), and the on-site energy Δ.

Electronic structure

Chemical accuracy for the van der Waals density functional

Jiri Klimeš1, David R Bowler2 and Angelos Michaelides3

1 London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1E 6BT, UK
2 London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

2010 J. Phys.: Condens. Matter 22 022201

The non-local van der Waals density functional (vdW-DF) of Dion et al (2004 Phys. Rev. Lett. 92 246401) is a very promising scheme for the efficient treatment of dispersion bonded systems. We show here that the accuracy of vdW-DF can be dramatically improved both for dispersion and hydrogen bonded complexes through the judicious selection of its underlying exchange functional. New and published exchange functionals are identified that deliver much better than chemical accuracy from vdW-DF for the S22 benchmark set of weakly interacting dimers and for water clusters. Improved performance for the adsorption of water on salt is also obtained.

Electronic properties of a biased graphene bilayer

Screened V versus n for a bilayer graphene system. Three different chemical dopings have been considered.

Forthcoming JPCM special issues for 2011:

- Geometrically frustrated magnetism
- Strongly correlated electron systems
- Domain wall dynamics in magnetic nanostructures
- Microfluidics
- Semiconducting oxides
An *ab initio* study of xenon retention in \(\alpha\)-quartz

M J Probert

Department of Physics, University of York, Heslington, York YO10 5DD, UK

2010 J. Phys.: Condens. Matter 22 025501

It has recently been suggested that a significant amount of Xe can be absorbed in \(\alpha\)-quartz and that this might be a significant process in the recycling of Xe from the atmosphere to the interior of the Earth. This suggestion is tested by *ab initio* calculations of Xe in \(\alpha\)-quartz using DFT. Three distinct candidate sites for Xe absorption are identified—substitutional at the silicon vacancy (Xe@V\(\text{Si}\)), at the oxygen vacancy (Xe@V\(\text{O}\)) and at an interstitial site (Xe@I)—and each is shown to be mechanically stable at both \(P = 0\) and 2 GPa. The energetics and electronic properties of these defect structures are analysed and it is shown that there is an energy barrier to the absorption at all sites at \(T = 0\). If the Xe absorption is a single-stage process in a perfect crystal then the lowest formation energy barrier (at both \(P = 0\) and 2 GPa) is for Xe@I at the interstitial site. If absorption is a two-stage process due to vacancies being already present at finite temperatures, then the subsequent barrier to Xe absorption is much lower and Xe@V\(\text{Si}\) has the lowest formation energy. However, it should be expected that there will be a much higher density of oxygen vacancies available for Xe absorption under realistic Earth core conditions and so in this scenario it is to be expected that all three candidate sites should be occupied.

Energy spectrum and density of states for a graphene quantum dot in a magnetic field

Norman J Morgenstern Horing¹ and S Y Liu²

¹ Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030, USA
² Department of Physics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China

2010 J. Phys.: Condens. Matter 22 025502

In this paper, we determine the spectrum and density of states of a graphene quantum dot in a normal quantizing magnetic field. To accomplish this, we employ the retarded Green function for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined graphene quantum dot subject to Landau quantization. Considering a \(\delta^2(\mathbf{r})\) potential well that supports just one subband state in the well in the absence of a magnetic field, the effect of Landau quantization is to ‘splitter’ this single energy level into a proliferation of many Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication of decay of the Landau-quantized graphene dot states into the quantized states of the host graphene sheet for ‘tight’ confinement by the \(\delta^2(\mathbf{r})\) potential well, notwithstanding extension of the dot Green function (and eigenfunctions) outside the \(\delta^2(\mathbf{r})\) potential well.

![Energy spectrum and density of states for a graphene quantum dot subject to Landau quantization for the K node as a function of the square root of the magnetic field.](image)

Preferred functionalization on zigzag graphene nanoribbons: first-principles calculations

Hoonkyung Lee

Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2010 J. Phys.: Condens. Matter 22 352205

We investigate the functionalization of functional groups to graphene nanoribbons with zigzag and armchair edges using first-principles calculations. We find that the formation energy for the configuration of the functional groups functionalized to the zigzag edge is \(~0.2\) eV per functional group lower than that to the armchair edge. The formation energy difference arises from a structural deformation on the armchair edge by the functionalization whereas there is no structural deformation on the zigzag edge. Selective functionalization on the zigzag edge takes place at a condition of the temperature and the pressure of \(~25\) °C and \(10^{-5}\) atm. Our findings show that selective functionalization can offer the opportunity for an approach to the separation of zigzag graphene nanoribbons with their solubility change.

![The charge density difference between the O atom and the H atom or the zigzag-edged graphene nanoribbons (ZGNR) when two hydroxyl groups are attached to the edge of the ZGNR.](image)
Evidence of superconductivity on the border of quasi-2D ferromagnetism in Ca$_2$RuO$_4$ at high pressure

Patricia Lebre Alireza1,2, Fumihiko Nakamura3, Swee Kuan Goh1, Yoshiteru Maeno4, Satoru Nakatsuji5, Yuen Ting Chris Ko1, Michael Sutherland6, Stephen Julian6 and Gilbert George Lonzarich1

1 Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
2 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
3 ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
4 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
5 Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581, Japan
6 Department of Physics, University of Toronto, Toronto, ON M5S 1A1, Canada

The layered perovskite Ca$_2$RuO$_4$ is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ~80 kbar with a maximum Curie temperature of 28 K. Above ~90 and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ~0.4 K in applied magnetic fields of up to ~10 mT. This indicates that our specimens of Ca$_2$RuO$_4$ are weakly superconducting on the border of a quasi-2D ferromagnetic state.

Antiferro-quadrupolar structures in UPd$_3$ inferred from x-ray resonant Bragg diffraction

Javier Fernández-Rodríguez1, Stephen W Lovesey2,3 and Jesús A Blanco4

1 European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
2 ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
3 Diamond Light Source Ltd, Oxfordshire OX11 0DE, UK
4 Departamento de Física, Universidad de Oviedo, E-33007 Oviedo, Spain

A systematic analysis of resonant x-ray Bragg diffraction data for UPd$_3$, with signal enhancement at the U M$_{IV}$ edge, including possible structural phase transitions leads to a new determination of the space groups of the material in the phases between $T_0 = 7.8$ K and $T_1 = 6.9$ K, as P_{222}, and between $T_1 = 6.7$ K and $T_2 = 4.4$ K, as P_2_1. In addition, the quadrupolar order parameters, $\langle Q_{xy} \rangle$ and $\langle Q_{yz} \rangle$, inferred from diffraction data for the phase between T_1 and T_2, are $\langle Q_{yz} \rangle$ and $\langle Q_{xy} \rangle$ at the (103) Bragg reflection and $\langle Q_{xy} \rangle$ at the (104) reflection.

Antiferro-quadrupolar orderings of $\langle Q_{xy} \rangle$ and $\langle Q_{yz} \rangle$ observed in the (104) and (103) reflections at $T = 5.2$ K.
Magnetic susceptibility, magnetization, specific heat, and electrical resistivity studies on single crystals of Ce$_4$Pt$_{12}$Sn$_{25}$ reveal an antiferromagnetic transition at $T_N = 0.19$ K, which develops from a paramagnetic state with a very large specific heat coefficient (C/T) of 14 Joule mol$^{-1}$ K$^{-2}$-Ce just above T_N. On the basis of its crystal structure and these measurements, we argue that a weak magnetic exchange interaction in Ce$_4$Pt$_{12}$Sn$_{25}$ is responsible for its low ordering temperature and a negligible Kondo-derived contribution to physical properties above T_N. The anomalous enhancement of specific heat above T_N is suggested to be related, in part, to weak geometric frustration of f-moments in this compound.

Three-dimensional representation of the crystal structure of Ce$_4$Pt$_{12}$Sn$_{25}$. The pressure inhomogeneity (Δp) for each of the different pressure media as a function of pressure, as calculated from the width of the superconducting transition of the pressure gauge. The pressure media in order of highest hydrostaticity are pentane–isopentane, Daphne oil 7373, and steatite. We investigate the evolution of the electrical resistivity of BaFe$_2$As$_2$ single crystals with pressure. The samples used were from the same batch, grown using a self-flux method, and showed properties that were highly reproducible. Samples were pressurized using three different pressure media: pentane–isopentane (in a piston–cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces the spin density wave order and favours the appearance of superconductivity, which is similar to what is seen in SrFe$_2$As$_2$. The pressure inhomogeneity (Δp) for each of the different pressure media as a function of pressure, as calculated from the width of the superconducting transition of the pressure gauge. The pressure media in order of highest hydrostaticity are pentane–isopentane, Daphne oil 7373, and steatite.
A comparative study on the thermoelectric effect of parent oxypnictides LaTAsO (T = Fe, Ni)

Qian Tao1, Zengwei Zhu1, Xiao Lin1, Guanghan Cao1, Zhu-an Xu1, Genfu Chen2, Jianlin Luo1 and Nanlin Wang1

1 Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

2010 J. Phys.: Condens. Matter 22 072201

The thermopower and Nernst effect were investigated for undoped parent compounds LaFeAsO and LaNiAsO. Both the thermopower and Nernst signal in iron-based LaFeAsO are significantly larger than those in nickel-based LaNiAsO. Furthermore, abrupt changes in both the thermopower and Nernst effect are observed below the structural phase transition temperature and spin-density wave (SDW) type antiferromagnetic (AFM) order temperature in Fe-based LaFeAsO. On the other hand, the Nernst effect is very small in the Ni-based LaNiAsO and it is weakly temperature-dependent, reminiscent of the case in normal metals. We suggest that the effect of SDW order on the spin scattering rate should play an important role in the anomalous temperature dependence of the Hall effect and Nernst effect in LaFeAsO. The contrasting behaviour between the LaFeAsO and LaNiAsO systems implies that the LaFeAsO system is fundamentally different from the LaNiAsO system and this may provide clues to the mechanism of high T_c superconductivity in Fe-based systems.

Superconductivity at 23 K in Pt doped BaFe$_{2-x}$Pt$_x$As$_2$ single crystals

S R Saha1, T Drye1, K Kirshenbaum1, N P Butch1, P Y Zavalij2 and Johnpierre Paglione3

1 Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD 20742, USA
2 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

2010 J. Phys.: Condens. Matter 22 072204

We report superconductivity in single crystals of the new iron-pnictide system BaFe$_{1.90}$Pt$_{0.10}$As$_2$ grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 139 K present in BaFe$_2$As$_2$ is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature $T_c = 23$ K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at T_c confirm the bulk nature of the superconducting phase. All properties of the superconducting state—

including the transition temperature T_c, the lower critical field $H_{c1} = 200$ mT, the upper critical field $H_{c2} = 65$ T, and the slope $\partial H_{c2}/\partial T$—are comparable in value to those found in other transition metal-substituted BaFe$_2$As$_2$ series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.

Vortex properties of two-dimensional superconducting Pb films

Y X Ning1, C L Song1,2, Y L Wang1, Xi Chen2, J F Jia1, Q K Xue1,2 and X C Ma1

1 Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China
2 Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China

2010 J. Phys.: Condens. Matter 22 065701

Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low-κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

Superconductivity at 23 K in Pt doped BaFe$_{2-x}$Pt$_x$As$_2$ single crystals

S R Saha1, T Drye1, K Kirshenbaum1, N P Butch1, P Y Zavalij2 and Johnpierre Paglione3

1 Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD 20742, USA
2 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

2010 J. Phys.: Condens. Matter 22 072204

We report superconductivity in single crystals of the new iron-pnictide system BaFe$_{1.90}$Pt$_{0.10}$As$_2$ grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 139 K present in BaFe$_2$As$_2$ is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature $T_c = 23$ K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at T_c confirm the bulk nature of the superconducting phase. All properties of the superconducting state—

including the transition temperature T_c, the lower critical field $H_{c1} = 200$ mT, the upper critical field $H_{c2} = 65$ T, and the slope $\partial H_{c2}/\partial T$—are comparable in value to those found in other transition metal-substituted BaFe$_2$As$_2$ series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.

Vortex properties of two-dimensional superconducting Pb films

Y X Ning1, C L Song1,2, Y L Wang1, Xi Chen2, J F Jia1, Q K Xue1,2 and X C Ma1

1 Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China
2 Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China

2010 J. Phys.: Condens. Matter 22 065701

Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low-κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

Superconductivity at 23 K in Pt doped BaFe$_{2-x}$Pt$_x$As$_2$ single crystals

S R Saha1, T Drye1, K Kirshenbaum1, N P Butch1, P Y Zavalij2 and Johnpierre Paglione3

1 Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD 20742, USA
2 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

2010 J. Phys.: Condens. Matter 22 072204

We report superconductivity in single crystals of the new iron-pnictide system BaFe$_{1.90}$Pt$_{0.10}$As$_2$ grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 139 K present in BaFe$_2$As$_2$ is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature $T_c = 23$ K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at T_c confirm the bulk nature of the superconducting phase. All properties of the superconducting state—

including the transition temperature T_c, the lower critical field $H_{c1} = 200$ mT, the upper critical field $H_{c2} = 65$ T, and the slope $\partial H_{c2}/\partial T$—are comparable in value to those found in other transition metal-substituted BaFe$_2$As$_2$ series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.

Vortex properties of two-dimensional superconducting Pb films

Y X Ning1, C L Song1,2, Y L Wang1, Xi Chen2, J F Jia1, Q K Xue1,2 and X C Ma1

1 Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China
2 Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China

2010 J. Phys.: Condens. Matter 22 065701

Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low-κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.
Semiconductors

Native defects in oxide semiconductors: a density functional approach

Fumiyasu Oba¹, Minseok Choi², Atsushi Togo³, Atsuto Seko² and Isao Tanaka¹,3

¹ Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
² Pioneering Research Unit for Next Generation, Kyoto University, Sakyo, Kyoto 606-8501, Japan
³ Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan

We report a semilocal and hybrid Hartree–Fock density functional study of native defects in three oxide semiconductors: ZnO, SrTiO₃, and SnO. The defect that is responsible for the n-type conductivity of ZnO has been debated, in which the O vacancy, Zn interstitial, their complexes, and residual H impurity are considered candidates. Our results indicate that the O vacancy induces a deep and localized in-gap state, whereas the Zn interstitial is a shallow donor and hence can be a source of the carriers. In view of the formation energies, the O vacancy is likely to form with a substantial concentration under O-poor conditions, but the Zn interstitial is unlikely. We thus propose that the O vacancy is relevant to the nonstoichiometry of ZnO and that a source other than the native defects, such as the H impurity, needs to be considered for the n-type conductivity. For SrTiO₃, the O vacancy and its complexes have been regarded as the origins of some of the remarkable electrical and optical properties. We suggest significant roles of the Ti antisite for a new insight into the defect-induced properties. Two types of Ti antisite, both of which are off-centered from the Sr site but toward different directions, exhibit low formation energies under Ti-rich conditions as does the O vacancy. They can explain optical properties such as visible-light emission, deep-level absorption, and the ferroelectricity observed in reduced SrTiO₃.

Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays

Y Tanaka¹, S P Collins², S W Lovesey³, M Matsumami¹, T Moriwaki¹ and S Shin¹

¹ RIKEN SPring-8 Centre, Sayo, Hyogo 679-5148, Japan
² Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE, UK
³ ISIS Facility and Diamond Light Source, Rutherford Appleton Laboratory, Oxfordshire OX11 OQX, UK

Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a space group pair, P₃121 (right-handed screw) and P₃21 (left-handed screw). X-ray diffraction with dispersion correction terms has been playing an important role in determining the handedness of enantiomers for a long time. However, this approach is not applicable for an elemental crystal such as tellurium or selenium. We have demonstrated that positive and negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely distinguish right from left tellurium. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

DID YOU KNOW?

JPCM fast track communications are free to read online.

iopscience.org/jpcm
First principles study of the optical contrast in phase change materials

S Caravati1, M Bernasconi2 and M Parrinello1

1 Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
2 Dipartimento di Scienze dei Materiali, Università di Milano-Bicocca, Via R Cozzi 53, I-20125, Milano, Italy

2010 J. Phys.: Condens. Matter 22 315801

We study from first principles the optical properties of the phase change materials Ge2Sb2Te5 (GST), GeTe and Sb2Te3 in the crystalline phase and in realistic models of the amorphous phase generated by quenching from the melt in ab initio dynamics simulations. The calculations reproduce the strong optical contrast between the crystalline and amorphous phases measured experimentally and exploited in optical data storage. It is demonstrated that the optical contrast is due to a change in the optical matrix elements across the phase change in all the compounds. It is concluded that the reduction of the optical matrix elements in the amorphous phases is due to angular disorder in p-bonding which dominates the amorphous network in agreement with previous proposals (Huang and Robertson 2010 Phys. Rev. B 81 081204) based on calculations on crystalline models.

Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi2Te3

Y S Hor, D Qu, N P Ong and R J Cava

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

2010 J. Phys.: Condens. Matter 22 375801

The electrical properties of single crystals of p-type Bi2Te3 are shown to be tuned by annealing as-grown crystals in elemental Te vapor at temperatures in the range of 400–420 °C. While as-grown nominally stoichiometric Bi2Te3 has p-type conductivity below room temperature, Te vapor annealed Bi2Te3 shows a cross over from p- to n-type behavior. The temperature dependent resistivity of the Te annealed crystals shows a characteristic broad peak near 100 K. Applied magnetic fields give rise to a large low temperature magnetothermoelectric effect in the Te annealed samples and enhance the low temperature peak in the resistivity. Further, Te annealed Bi2Te3 shows a large positive magnetoresistance, ~200% at 2 K, and ~15% at room temperature. The annealing procedure described can be employed to optimize the properties of Bi2Te3 for study as a topological insulator.
Invariant lattice strain and polarization in BaTiO$_3$–CaTiO$_3$ ferroelectric alloys

Desheng Fu1,2, Mitsuru Itoh3 and Shin-ya Koshihara4,5

1 Division of Global Research Leaders, Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu 432-8561, Japan
2 Collaborative Research Project of Materials and Structures Laboratory of Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
3 Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
4 Department of Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
5 CREST and ERATO, Japan Science and Technology Agency (JST), 3-5 Sanbanchou, Chiyoda-ku, Tokyo 102-0075, Japan

2010 J. Phys.: Condens. Matter 22 052204

IOP Fast Track Communications

We report the lattice strain and polarization of the BaTiO$_3$–CaTiO$_3$ solid solution. We found that the lattice strain evaluated by the tetragonality of the tetragonal phase at room temperature is nearly independent of the composition within the limit of the solid solution. In association with this variation, the saturation polarization remains nearly unchanged. Such invariant lattice strain associated with the ionic displacement in ferroelectrics is considered to be responsible for the nearly compositional independence of the polarization and the observed ferroelectric Curie temperature. Its relatively stable polarization compared with that of pure BaTiO$_3$ is very interesting for technological applications, such as in ferroelectric memory.

Polarization and magnetization dynamics of a field-driven multiferroic structure

Alexander Sukhov1, Chenglong Jia1, Paul P Horley2 and Jamal Berakdar1

1 Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
2 Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/ Monterrey, 31109 Chihuahua, Mexico

2010 J. Phys.: Condens. Matter 22 352201

IOP Fast Track Communications

We consider a multiferroic chain with a linear magnetoelectric coupling induced by electrostatic screening at the ferroelectric/ferromagnet interface. We study theoretically the dynamic ferroelectric and magnetic response to external magnetic and electric fields by utilizing an approach based on coupled Landau–Khalatnikov and finite-temperature Landau–Lifshitz–Gilbert equations. Additionally, we make comparisons with Monte Carlo calculations. It is demonstrated that for material parameters corresponding to BaTiO$_3$/Fe the polarization and the magnetization are controllable by external magnetic and electric fields, respectively.
Artificial magnetism and left-handed media from dielectric rings and rods

L Jelinek1,2 and R Marqués1

1 Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague, Czech Republic
2 Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla, Spain

2010 J. Phys.: Condens. Matter 22 025902

It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

SEM images of as-grown samples of undoped and Cu-doped ZnO nanowires. The insets show magnified images of their local morphologies.

Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires

H J Xu¹, H C Zhu¹, X D Shan¹, Y X Liu¹, J Y Gao¹, X Z Zhang¹, J M Zhang¹, P W Wang¹, Y M Hou¹ and D P Yu¹

1 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People’s Republic of China
2 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China

2010 J. Phys.: Condens. Matter 22 016002

Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (\(\text{Zn}_x\text{Cu}_y\text{O}\) nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high \(T_c\) ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.
Neutron diffraction study of the BiFeO$_3$ spin cycloid at low temperature

Julia Herrero-Albillos1,7, Gustau Catalan2, José Alberto Rodríguez-Velamazan1,4, Michel Viret3, Dorothee Colson4 and James F Scott5

1 Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
2 ICREA and CIN2 (CSIC-ION), Campus Universitat Autonoma de Barcelona, Bellaterra 08193, Spain
3 Institut Laue-Langevin, F-38042 Grenoble, France
4 Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, E-50009 Zaragoza, Spain
5 CEA Saclay, IRAMIS, Service de Physique de l’Etat Condensé (SPEC, CNRS URA 2464), F-91191 Gif Sur Yvette Cedex, France
6 Cavendish Laboratory, Department of Physics, University of Cambridge, UK
7 Present address: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Deutschland, Germany

2010 J. Phys.: Condens. Matter 22 256001

The reported observation of two anomalies in the intensity of the magnon Raman peaks of BiFeO$_3$, at 140 and 200 K (Singh et al 2008 J. Phys.: Condens. Matter 20 252203; Cazayous et al 2008 Phys. Rev. Lett. 101 037601) led to the hypothesis that such anomalies might originate from a spin reorientation transition. In order to test this hypothesis, we have used temperature-dependent neutron diffraction to track the evolution of the magnetic configuration in single crystals of BiFeO$_3$. Our results indicate that there is no average reorientation of the spins. This suggests that the magnon anomalies may instead be related to the freezing of modes that do not alter the average projection of the spins over the plane of the cycloid, as also reported for multiferroic TbMnO$_3$ (Sentff et al 2006 J. Phys.: Condens. Matter 18 2069).

Low temperature incommensurately modulated and noncollinear spin structure in FeCr$_2$S$_4$

G M Kalvius1, A Krimmel2, O Hartmann3, R Wäppling3, F E Wagner4, F J Litterst4, V Tsurkan2,5 and A Loidl6

1 Physics Department, Technical University Munich, D-85747 Garching, Germany
2 Experimental Physics V, Center for Electronic Correlations and Magnetism, Augsburg University, D-86159 Augsburg, Germany
3 Department of Physics and Material Science, Uppsala University, S-75121 Uppsala, Sweden
4 IPKM, Technical University Braunschweig, D-38106 Braunschweig, Germany
5 Institute of Applied Physics, Academy of Sciences, RM-2028 Chisinau, Republic of Moldova

2010 J. Phys.: Condens. Matter 22 052205

IOP Fast Track Communications

FeCr$_2$S$_4$ orders magnetically at $T_N = 170$ K. According to neutron diffraction, the ordered state down to 4.2 K is a simple collinear ferrimagnet maintaining the cubic spinel structure. Later studies, however, claimed trigonal distortions below ~60 K coupled to the formation of a spin glass type ground state. To obtain further insight, muon spin rotation/relaxation (μSR) spectroscopy was carried out between 5 and 200 K together with new 57Fe Mössbauer measurements. Below ~50 K, our data point to the formation of an incommensurately modulated noncollinear spin arrangement like a helical spin structure. Above 50 K, the spectra are compatible with collinear ferrimagnetism, albeit with a substantial spin disorder on the scale of a few lattice constants. These spin lattice distortions become very large at 150 K and the magnetic state is now better characterized as consisting of rapidly fluctuating short-range ordered spins. The Néel transition is of second order, but ill defined, extending over a range of ~10 K. The Mössbauer data around 10 K confirm the onset of orbital freezing and are also compatible with the noncollinear order of iron. The absence of a major change in the quadrupole interaction around 50 K renders the distortion of crystal symmetry to be small.

Fe Mössbauer data of FeCr$_2$S$_4$. Temperature dependences of the hyperfine field B_{hf} (top) and the quadrupole interaction Q (bottom).

All of the papers featured in the Highlights 2010 brochure are free to read on the JPCM website until 31 December 2011. iopscience.org/jpcm
Stable and fast semi-implicit integration of the stochastic Landau–Lifshitz equation

J H Mentink¹, M V Tret’yakov², A Fasolino¹, M I Katsnelson¹ and Th Rasing¹

¹ Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
² Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK

2010 J. Phys.: Condens. Matter 22 176001

We propose new semi-implicit numerical methods for the integration of the stochastic Landau–Lifshitz equation with built-in angular momentum conservation. The performance of the proposed integrators is tested on the 1D Heisenberg chain. For this system, our schemes show better stability properties and allow us to use considerably larger time steps than standard explicit methods. At the same time, these semi-implicit schemes are also of comparable accuracy to and computationally much cheaper than the standard midpoint implicit method. The results are of key importance for atomistic spin dynamics simulations and the study of spin dynamics beyond the macro spin approximation.

Comparison of the explicit HeunP, implicit IMP and semi-implicit methods SIA and SIB for the deterministic case \(\alpha = 0 \). The trajectory of two interacting spins is shown by plotting the \(x \) components of the two spins and one \(z \) component. Solid lines indicate the analytical solution.

The paired-electron crystal in the two-dimensional frustrated quarter-filled band

H Li¹, R T Clay² and S Mazumdar³

¹ Department of Physics, University of Arizona, Tucson, AZ 85721, USA
² Department of Physics and Astronomy and HPC² Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA

2010 J. Phys.: Condens. Matter 22 272201

The competition between antiferromagnetic and spin-singlet ground states within quantum spin models and the \(\frac{1}{2} \)-filled band Hubbard model has received intense scrutiny. Here we demonstrate a frustration-induced transition from Néel antiferromagnetism to a spin-singlet state in the interacting \(\frac{1}{4} \)-filled band on an anisotropic triangular lattice. While the antiferromagnetic state has equal charge densities, 0.5, on all sites, the spin-singlet state is a paired-electron crystal, with pairs of charge-rich sites separated by pairs of charge-poor sites. The paired-electron crystal provides a natural description of the spin-gapped state proximate to superconductivity in many organic charge transfer solids. Pressure-induced superconductivity in these correlated-electron systems is likely a result of a transition from the \(\frac{1}{4} \)-filled band valence bond solid to a valence bond liquid.

Charge occupancies and singlet bonds for \(\kappa-(ET)_2Cu_2(CN)_3 \) in the \(T = 0 \) limit, as suggested from extension of the paired-electron crystal concept to this system.

DID YOU KNOW?
The average receipt-to-acceptance time for regular papers is just **69 days**.
Discover more with...

IOPscience

What makes IOPscience different?
- Find relevant content faster
- Access more content
- Interact and share
- Stay up to date
- Manage your research information

Take an online tour at iopscience.org to discover how IOPscience can help you.
Four reasons why top authors publish in JPCM

1. **High download figures**
 With download figures of 1.5 million in 2010, publishing in JPCM guarantees that your work will be well read by the community.

2. **Fast track publication**
 With an average receipt to web publication time of 40 days, fast track communications offer rapid publication of your timely work.

3. **Global visibility**
 JPCM is available in over 2200 institutions and is read by scientists at the top research organizations across the world.

4. **Rapid decision process**
 In 2010 the median number of days between receipt and acceptance for regular papers was only 69 days.
We would like to thank all of our authors, referees, board members and supporters across the world for their vital contribution to the work and progress of *Journal of Physics: Condensed Matter.*